Monthly Archives: فبراير 2016

الرياضيات في دقيقة: الجنيه المفقود

هنا معضلة معروفة: لنفرض انني بحاجة لشراء كتاب من متجر يكلف 7 £ (جنيه انجليزي)، وليس لدي اي نقود، لذلك سأقترض  £5 من أخي و£5 من أختي. سأشتري الكتاب وأحصل على £3 صرافة (باقي). أرجع £1 لكل من أخي وأختي وأحتفظ بالباقي £1. أنا … إقرأ المزيد

نُشِرت في رياضيات في دقيقة | الوسوم: , , | أضف تعليق

الرياضيات في دقيقة: الحساب النمطي

أنت تستخدم الحساب النمطي مرات عديدة كل يوم عندما تفكير في الوقت. تخيل، على سبيل المثال، أنك تسير في رحلة قطار على الساعة 11 مساءا تنتهي بعد ثلاث ساعات. متى ستصل؟ ليس عند 11+3=14 تماما، لكن عند 2 تماما في الصباح. … إقرأ المزيد

نُشِرت في رياضيات في دقيقة | الوسوم: , , , | 7 تعليقات

الرياضيات في دقيقة: مسائل الرصف

من بين جميع المضلعات المُنتظمة هناك ثلاثة فقط يُمكنك استخدامها لرصف جدار مع: المربع، المثلث متساوى الأضلاع والسداسي المنتظم. البقية لا تتناسب مع بعضها بعضا من السهل اثبات ذلك. المضلع المنظم مع  وجه له من الزوايا الداخليه ما يساوي   … إقرأ المزيد

نُشِرت في رياضيات في دقيقة | الوسوم: , , , , | أضف تعليق

الرياضيات في دقيقة: جمع الكسور (أسهل طريقة)

جمع الكسور على الغالب كان أول خطوة صعبة واجهناها في الرياضيات في المدرسة. على سبيل المثال، لانجاز  تحتاج أولا لاكتشاف أدنى مُضاعف مُشترك لكل من 6 و10 وهو 30، ومن أجل الحصول على 30 في مقام الكسرين أنت في حاجة … إقرأ المزيد

نُشِرت في رياضيات في دقيقة | الوسوم: , , , | 2 تعليقان

الرياضيات في دقيقة: الكسور المُستمرة

الكسر  هو تقريب جيد للعدد غير الكسري    لدرجة أنه هو الذي يُحتفل به في يوم تقريب باي في 22 جويلية. لكن هل تساءلت يوما ما عن  كيفية حساب تقريب كسري لأعداد غير كسرية؟ الجواب يأتي من الكسور المُستمرة: وهي … إقرأ المزيد

نُشِرت في رياضيات في دقيقة | الوسوم: , , , | أضف تعليق

سبعة (07) أمور أنتَ في حاجة لمعرفتها حول الأعداد الأولية

في هذا الحديث الممتاز، الرياضياتية ” فيكي نيل” تعطينا مُقدمة جذابة وسهلة المتابعة الى الأعداد الأولية، من الوصف الشامل لما هي عليه، الى الاثبات القديم على أنها لانهائية، الى نظرية الأعداد الأولية، حدسية التوأم الأولي وأكثر. مع نهاية هذا الحديث … إقرأ المزيد

نُشِرت في مما ترجمته | الوسوم: , , | أضف تعليق

الرياضيات في دقيقة: أسرار الأعداد

 نظرية الأعداد تُشتهر بالمسائل التي بامكان أي شخص فهمها ومن السهل التعبير عنها، لكنها صعبة الاثبات. وهنا البعض من المُفضلة لدينا حدسية غولدباخ دُعيت حدسية غولدباخ بعد ما قام به عالم الرياضيات كريستيان غولدباخ من صياغتها في منتصف القرن الثامن عشر، … إقرأ المزيد

نُشِرت في رياضيات في دقيقة | الوسوم: , , , , , , , , | تعليق واحد

الرياضيات في دقيقة: أعداد العَد الثنائي

أغلب الناس تخاف من حقيقة أن أجهزة الكمبيوتر تعمل باستخدام أوتار من 0 و 1 . ولكن كيف يُمكنك كتابة الأعداد فقط باستخدام هذين الرمزين؟ لنرى كيف، دعونا أولا نُذكر أنفسنا بطريقة عمل الطريقة العشرية العادية في كتابة الأعداد، دعونا … إقرأ المزيد

نُشِرت في رياضيات في دقيقة | الوسوم: , , , , | أضف تعليق

الرياضيات في دقيقة: الأعداد المثالية

الأعداد المثالية هي أعداد طبيعية مجموع قواسمهما تعطينا العدد نفسه، العدد 6 أفضل مثال، قواسم 6 هي 3،2،1     (نستثني العدد 6 في حد ذاته، و نحتسب فقط القواسم الصحيحة الأخرى) ولأننا نجد 6=3+2+1 عرف الناس الأعداد المثالية منذ آلالاف السنين، وفُتنوا … إقرأ المزيد

نُشِرت في رياضيات في دقيقة | الوسوم: , , , | تعليق واحد

الرياضيات في دقيقة: بديهية اقليدس الرابعة

قبل 2000 سنة مضت عالم الرياضيات الاغريقي اقليدس الاسكندرية أسس بديهياته الخمسة في الهندسة: كانت بمثابة بيانات اعتقد أنها صحيحة بشكل جلي ولا تحتاج الى المزيد من التبرير، الثلاثة الأولى هي في الواقع واضحة جدا (شاهدها هــنــا) الإفتراض، على سبيل المثال، أنه … إقرأ المزيد

نُشِرت في رياضيات في دقيقة | الوسوم: , , , , , | أضف تعليق